Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.632
1.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731514

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Ligands , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects
2.
Fish Shellfish Immunol ; 149: 109600, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701991

Excess utilization of plant protein sources in animal feed has been found to adversely affect the antioxidant properties and immunity of animals. While the role of gut microbes in plant protein-induced inflammation has been identified in various models, the specific mechanisms regulating gut microbes in crustaceans remain unclear. Accordingly, this study was designed to investigate the effects of replacing fishmeal with soybean meal (SM) on the hepatopancreas antioxidant and immune capacities, and gut microbial functions of crayfish, as well as the potential microbial regulatory mechanisms. 750 crayfish (4.00 g) were randomly divided into five groups: SS0, SS25, SS50, SS75, and SS100, and fed diets with different levels of soybean meal substituted for fishmeal for six weeks. High SM supplementation proved detrimental to maintaining hepatopancreas health, as indicated by an increase in hemolymph MDA content, GPT, and GOT activities, the observed rupture of hepatopancreas cell basement membranes, along with the decreased number of hepatopancreatic F cells. Moreover, crayfish subjected to high SM diets experienced obvious inflammation in hepatopancreas, together with up-regulated mRNA expression levels of nfkb, alf, and tlr (p<0.05), whereas the lzm mRNA expression level exhibited the highest value in the SS25 group. Furthermore, hepatopancreas antioxidant properties highly attenuated by the level of dietary SM substitution levels, as evidenced by the observed increase in MDA content (p<0.05), decrease in GSH content (p<0.05), and inhabitation of SOD, CAT, GPx, and GST activities (p<0.05), along with down-regulated hepatopancreas cat, gpx, gst, and mmnsod mRNA expression levels via inhibiting nrf2/keap1 pathway. Functional genes contributing to metabolism identified that high SM diets feeding significantly activated lipopolysaccharide biosynthesis, revealing gut dysfunction acted as the cause of inflammation. The global microbial co-occurrence network further indicated that the microbes contributing more to serum indicators and immunity were in module eigengene 17 (ME17). A structural equation model revealed that the genes related to alf directly drove the serum enzyme activities through microbes in ME17, with OTU399 and OTU533 identified as major biomarkers and classified into Proteobacteria that secrete endotoxins. To conclude, SM could replace 25 % of fishmeal in crayfish diets without negatively affecting immunity, and antioxidant capacity. Excessive SM levels contributed to gut dysfunction and weakened the innate immune system of crayfish.


Animal Feed , Antioxidants , Astacoidea , Diet , Gastrointestinal Microbiome , Glycine max , Hepatopancreas , Animals , Astacoidea/immunology , Astacoidea/genetics , Animal Feed/analysis , Glycine max/chemistry , Antioxidants/metabolism , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Hepatopancreas/immunology , Hepatopancreas/metabolism , Immunity, Innate/drug effects , Random Allocation , Intestines/immunology , Intestines/drug effects , Dietary Supplements/analysis
3.
Chem Biol Interact ; 395: 111036, 2024 May 25.
Article En | MEDLINE | ID: mdl-38705443

Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.


Caenorhabditis elegans , Reactive Oxygen Species , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Reactive Oxygen Species/metabolism , Quinoxalines/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oxidative Stress/drug effects , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Gelsemium/chemistry , Unfolded Protein Response/drug effects , Permeability/drug effects , Lipofuscin/metabolism , Locomotion/drug effects , Indole Alkaloids
4.
Toxins (Basel) ; 16(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38787059

The aims of this study were (i) to determine the effect of an algoclay-based decontaminant on the oral availability of three mycotoxins (deoxynivalenol; DON, ochratoxin A; OTA, and aflatoxin B1; AFB1) using an oral bolus model and (ii) to determine the effect of this decontaminant on the performance, intestinal morphology, liver oxidative stress, and metabolism, in broiler chickens fed a diet naturally contaminated with DON. In experiment 1, sixteen 27-day-old male chickens (approximately 1.6 kg body weight; BW) were fasted for 12 h and then given a bolus containing either the mycotoxins (0.5 mg DON/kg BW, 0.25 mg OTA/kg BW, and 2.0 mg AFB1/kg BW) alone (n = 8) or combined with the decontaminant (2.5 g decontaminant/kg feed; circa 240 mg/kg BW) (n = 8). Blood samples were taken between 0 h (before bolus administration) and 24 h post-administration for DON-3-sulphate, OTA, and AFB1 quantification in plasma. The algoclay decontaminant decreased the relative oral bioavailability of DON (39.9%), OTA (44.3%), and AFB1 (64.1%). In experiment 2, one-day-old male Ross broilers (n = 600) were divided into three treatments with ten replicates. Each replicate was a pen with 20 birds. The broiler chickens were fed a control diet with negligible levels of DON (0.19-0.25 mg/kg) or diets naturally contaminated with moderate levels of DON (2.60-2.91 mg/kg), either supplemented or not with an algoclay-based decontaminant (2 g/kg diet). Jejunum villus damage was observed on day 28, followed by villus shortening on d37 in broiler chickens fed the DON-contaminated diet. This negative effect was not observed when the DON-contaminated diet was supplemented with the algoclay-based decontaminant. On d37, the mRNA expression of glutathione synthetase was significantly increased in the liver of broiler chickens fed the DON-contaminated diet. However, its expression was similar to the control when the birds were fed the DON-contaminated diet supplemented with the algoclay-based decontaminant. In conclusion, the algoclay-based decontaminant reduced the systemic exposure of broiler chickens to DON, OTA, and AFB1 in a single oral bolus model. This can be attributed to the binding of the mycotoxins in the gastrointestinal tract. Moreover, dietary contamination with DON at levels between 2.69 and 2.91 mg/kg did not impair production performance but had a negative impact on broiler chicken intestinal morphology and the liver redox system. When the algoclay-based decontaminant was added to the diet, the harm caused by DON was no longer observed. This correlates with the results obtained in the toxicokinetic assay and can be attributed to a decreased absorption of DON.


Aflatoxin B1 , Animal Feed , Chickens , Food Contamination , Liver , Ochratoxins , Oxidative Stress , Trichothecenes , Animals , Trichothecenes/toxicity , Oxidative Stress/drug effects , Male , Ochratoxins/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Aflatoxin B1/toxicity , Animal Feed/analysis , Intestines/drug effects , Intestines/pathology , Toxicokinetics , Diet/veterinary , Aluminum Silicates
5.
Gut Microbes ; 16(1): 2355693, 2024.
Article En | MEDLINE | ID: mdl-38780487

Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.


Bacterial Translocation , Fluorouracil , Gastrointestinal Microbiome , Intestines , Animals , Mice , Bacterial Translocation/drug effects , Gastrointestinal Microbiome/drug effects , Humans , Intestines/microbiology , Intestines/drug effects , Muramidase/metabolism , Caloric Restriction , Mice, Inbred C57BL , Male , Lactobacillus , Bacteria/drug effects , Bacteria/metabolism , Bacteria/classification , Female , Opportunistic Infections/microbiology , Opportunistic Infections/prevention & control , Opportunistic Infections/drug therapy
6.
J Ethnopharmacol ; 331: 118274, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38697410

ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. AIM OF THE STUDY: To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. METHODS: In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. RESULTS: The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. CONCLUSION: The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.


Drugs, Chinese Herbal , Lipopolysaccharides , Polycystic Ovary Syndrome , Signal Transduction , Toll-Like Receptor 4 , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Animals , Female , Toll-Like Receptor 4/metabolism , Mice , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Insulin Resistance , Diet, High-Fat/adverse effects , Disease Models, Animal , Dehydroepiandrosterone/pharmacology , Capsules , Intestines/drug effects , Mice, Inbred C57BL , Ovary/drug effects , Ovary/metabolism , Ovary/pathology
7.
J Ethnopharmacol ; 331: 118288, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38705426

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Xiaoer-Feire-Qing granules (XEFRQ) has been used to treat pyretic pulmonary syndrome (PPS) in children for many years. The function of the lungs is considered to be closely related to the large intestine in TCM. PURPOSE: We aimed to investigate the effects of XEFRQ on PPS and the underlying mechanisms via network pharmacology and animal experiments. METHODS: The TCMSP platform was used to identify the ingredients and potential targets of XEFRQ. The GeneCards, OMIM, and TTD databases were used to predict PPS-associated targets. Cytoscape 3.9.1 was employed to construct the protein-protein interaction network, and target prediction was performed by GO and KEGG analyses. For the animal experiment, a PPS model was constructed by three cycles of nasal drip of Streptococcus pneumoniae (STP; 0.5 mL/kg). The animals were randomly divided into the following four groups according to their weight (n = 10 rats per group): the blank group, the model group, the XEFRQ-L (16.3 g/kg) group, and the XEFRQ-H (56.6 g/kg) group. Rats in the blank group and the model group were given 0.5% CMC-Na by gavage. The general conditions of the rats were observed, and their food-intake, body weight, and body temperature were recorded for 14 days. After the intervention of 14 days, serum was collected to detect inflammatory cytokines (TNF-α, IL-1ß, and PGE2) and neurotransmitters (5-HT, SP, and VIP). H&E staining was used to observe the pathological morphology of lung and colon tissue. AQP3 expression was detected by Western blot. In addition, the gut microbiota in cecal content samples were analyzed by 16S rDNA high-throughput sequencing. RESULTS: Our network analysis revealed that XEFRQ may alleviate PPS injury by affecting the levels of inflammatory cytokines and neurotransmitters and mitigating STP-induced PPS.In vivo validation experiments revealed that XEFRQ improved STP-induced PPS and reduced the expression of inflammatory cytokines and neurotransmitters. Notably, XEFRQ significantly decreased the protein expression levels of AQP3, which was associated with dry stool. Our gut microbiota analysis revealed that the relative abundance of [Eubacterium]_ruminantium_group, Colidextribacter, Romboutsia, and Oscillibacter was decreased, which means XEFRQ exerts therapeutic effects against PPS associated with these bacteria. CONCLUSION: Our results demonstrate that XEFRQ alleviates PPS by affecting the lungs and intestines, further guiding its clinical application.


Drugs, Chinese Herbal , Lung , Network Pharmacology , Rats, Sprague-Dawley , Streptococcus pneumoniae , Animals , Drugs, Chinese Herbal/pharmacology , Lung/drug effects , Lung/microbiology , Lung/pathology , Lung/metabolism , Male , Streptococcus pneumoniae/drug effects , Rats , Cytokines/metabolism , Disease Models, Animal , Protein Interaction Maps , Intestines/drug effects , Intestines/microbiology , Fever/drug therapy , Gastrointestinal Microbiome/drug effects , Lung Diseases/drug therapy , Lung Diseases/microbiology
8.
Ecotoxicol Environ Saf ; 278: 116336, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38691883

Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.


Aflatoxin B1 , Aflatoxin M1 , Proteomics , Aflatoxin M1/toxicity , Aflatoxin B1/toxicity , Animals , Mice , Caco-2 Cells , Humans , Male , Intestines/drug effects , Intestines/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
9.
Sci Rep ; 14(1): 11885, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789563

This study investigated the effects of supplemental nucleotides, autolyzed yeast (Saccharomyces cerevisiae), and sodium butyrate in diets for nursery pigs on growth performance, diarrhea incidence, blood profile, intestinal morphology, mRNA expression of nutrient transporters, inflammatory markers, antioxidant profile, and tight junction proteins in the small intestine. One hundred eighty 21-day-old pigs (5.17 ± 0.57 kg) were assigned in a randomized block design to 1 of 4 dietary treatments: (1) CON: control, basal diet, (2) NUC: CON + nucleotides, (3) YSC: CON + lysed yeast S. cerevisiae, (4) ASB: CON + acidifier sodium butyrate. Pigs were fed for 24 days, phase 1 (21-32 days) and 2 (32-45 days). During phase 1, YSC and ASB improved average daily gain (ADG) and feed conversion (FC) compared with CON. At the overall period, ASB improved ADG and YSC improved FC compared with CON. The NUC diet did not affect growth performance. The ASB increased ileal villus height compared to CON. The YSC and ASB reduced the number of Peyer's patches in the ileum compared with CON. The YSC increased mRNA expression of nutrient transporters (SMCT2, MCT1, and PepT1), tight junction proteins (OCL and ZO-1), antioxidants (GPX), and IL1-ß in the jejunum compared with CON. The ASB increased mRNA expression of nutrient transporters (SGLT1 and MCT1), tight junction proteins (OCL and ZO-1), and antioxidants (GPX and SOD) compared with CON. In conclusion, autolyzed yeast and sodium butyrate promoted growth performance by improving the integrity of the intestinal barrier, the mRNA expression of nutrient transporters, and antioxidant enzymes in the jejunum of nursery pigs whereas supplementation of nucleotides did not show such effects.


Animal Feed , Butyric Acid , Dietary Supplements , Saccharomyces cerevisiae , Weaning , Animals , Swine/growth & development , Butyric Acid/pharmacology , Butyric Acid/administration & dosage , Saccharomyces cerevisiae/metabolism , Animal Feed/analysis , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Antioxidants/metabolism , Intestines/drug effects
10.
Cell Biol Toxicol ; 40(1): 33, 2024 May 21.
Article En | MEDLINE | ID: mdl-38769285

Fumonisin B1 (FB1), a water-soluble mycotoxin released by Fusarium moniliforme Sheld, is widely present in corn and its derivative products, and seriously endangers human life and health. Recent studies have reported that FB1 can lead to pyroptosis, however, the mechanisms by which FB1-induced pyroptosis remain indistinct. In the present study, we aim to investigate the mechanisms of pyroptosis in intestinal porcine epithelial cells (IPEC-J2) and the relationship between FB1-induced endoplasmic reticulum stress (ERS) and pyroptosis. Our experimental results showed that the pyroptosis protein indicators in IPEC-J2 were significantly increased after exposure to FB1. The ERS markers, including glucose-regulated Protein 78 (GRP78), PKR-like ER kinase protein (PERK), and preprotein translocation factor (Sec62) were also significantly increased. Using small interfering RNA silencing of PERK or Sec62, the results demonstrated that upregulation of Sec62 activates the PERK pathway, and activation of the PERK signaling pathway is upstream of FB1-induced pyroptosis. After using the ERS inhibitor 4-PBA reduced the FB1-triggered intestinal injury by the Sec62-PERK pathway. In conclusion, we found that FB1 induced pyroptosis by upregulating Sec62 to activate the PERK pathway, and mild ERS alleviates FB1-triggered damage. It all boils down to one fact, the study provides a new perspective for further, and improving the toxicological mechanism of FB1.


Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Pyroptosis , Signal Transduction , eIF-2 Kinase , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Animals , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Swine , Signal Transduction/drug effects , Endoplasmic Reticulum Chaperone BiP/metabolism , Cell Line , Intestines/drug effects , Intestines/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Fumonisins
11.
Drug Des Devel Ther ; 18: 1695-1710, 2024.
Article En | MEDLINE | ID: mdl-38799799

Purpose: Polygala tenuifolia Willd. (PT), a traditional Chinese medicinal plant extensively employed in managing Alzheimer's disease, exhibits notable gastrointestinal side effects as highlighted by prior investigations. In contrast, Magnolia officinalis Rehd. et Wils (MO), a traditional remedy for gastrointestinal ailments, shows promising potential for ameliorating this adverse effect of PT. The objective of this study is to examine the underlying mechanism of MO in alleviating the side effects of PT. Methods: Hematoxylin-eosin (H&E) staining was used to observe the structural damage of zebrafish intestine, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors and oxidative stress. The integrity of the intestinal tight junctions was examined using transmission electron microscope (TEM). Moreover, the expression of intestinal barrier genes and PI3K/AKT/NF-κB signaling pathway-related genes was determined through quantitative real-time PCR. The changes in intestinal microbial composition were analyzed using 16S rRNA and metagenomic techniques. Results: MO effectively ameliorated intestinal pathological damage and barrier gene expression, and significantly alleviated intestinal injury by reducing the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, and inhibiting the activation of PI3K/AKT/NF-κB pathway. Furthermore, MO could significantly increase the relative abundance of beneficial microorganisms (Lactobacillus, Blautia and Saccharomyces cerevisiae), and reduce the relative abundance of pathogenic bacteria (Plesiomonas and Aeromonas). Conclusion: MO alleviated PT-induced intestinal injury, and its mechanism may be related to the inhibition of PI3K/AKT/NF-κB pathway activation and regulation of intestinal flora.


Gastrointestinal Microbiome , Magnolia , NF-kappa B , Phosphatidylinositol 3-Kinases , Polygala , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Magnolia/chemistry , Polygala/chemistry , Animals , Gastrointestinal Microbiome/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Intestines/drug effects , Intestines/pathology
12.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 May 03.
Article En | MEDLINE | ID: mdl-38709282

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Butyrates , HMGB1 Protein , Myeloid Differentiation Factor 88 , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/drug effects , Mice , Signal Transduction/drug effects , Butyrates/pharmacology , Male , Molecular Docking Simulation , Intestines/drug effects , Intestines/pathology , Disease Models, Animal , Mice, Inbred C57BL , Protein Interaction Maps
13.
Int J Biol Macromol ; 269(Pt 2): 132077, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723832

This study investigated the structure of acid Alhagi camelorum Fischa polysaccharide (aAP) and its impact on intestinal activity in mice. The results showed that aAP comprised of the fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, glucuronic acid with the molar ratio of 0.81:14.97:10.84:11.14:3.26:0.80:0.80:54.92:2.47 with the molecular weight (Mw) of 22.734 kDa. Additionally, the composition of aAP was assessed via FT-IR, methylation, and NMR analyses, indicating that the backbone of the aAP was consisted of →4)-α-D-GalpA-6-OMe-(1 â†’ 4)-α-GalpA-(1 â†’ and →4)-α-D-GalpA-6-OMe-(1 â†’ 2)-α-L-Rhap-(1→, as well as →4)-ß-D-Galp- and →5)-α-L-Araf- for the branched chain. Furthermore, ICR mice underwent intragastric administration of different concentrations of aAP for 7 consecutive days. The results showed that aAP enhanced the murine spleen and thymus indices, promoted the secretion of serum lgG antibody, intestinal lgA antibody and intestinal cytokines, improved the morphology of intestinal villi and crypts, enhanced quantity of intestinal IELs and IgA+ cells, and activated T lymphocytes and DC cells in MLNs. In summary, these findings suggest that the utilization of aAP could enhance the immune response of the murine intestinal mucosa.


Polysaccharides , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Mice , Intestines/drug effects , Intestines/immunology , Mice, Inbred ICR , Molecular Weight , Spleen/drug effects , Spleen/immunology , Spleen/cytology , Thymus Gland/drug effects , Cytokines/metabolism
14.
J Hazard Mater ; 472: 134478, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38696962

Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.


Gastrointestinal Microbiome , Glycolipids , Larva , Polystyrenes , Zebrafish , Animals , Polystyrenes/toxicity , Gastrointestinal Microbiome/drug effects , Glycolipids/metabolism , Larva/drug effects , Larva/metabolism , Nanoparticles/toxicity , Intestines/drug effects , Intestines/microbiology , Microplastics/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
15.
J Hazard Mater ; 472: 134509, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38704907

Aged nanoplastics (aged-NPs) have unique characteristics endowed by environmental actions, such as rough surface, high oxygen content. Although studies have highlighted the potential hazards of aged-NPs, limited research has provided strategies for aged-NPs pollution remediation. The dietary intervention of quercetin is a novel insight to address the health risks of aged-NPs. This study explored the impact of aged-NPs on intestinal barrier homeostasis at the environmentally relevant dose and investigated the alleviating effects of quercetin on aged-NPs toxicity through transcriptomics and molecular biology analysis. It indicated that aged-NPs induced intestinal barrier dysfunction, which was characterized by higher permeability, increased inflammation, and loss of epithelial integrity, while quercetin restored it. Aged-NPs disrupted redox homeostasis, upregulated inflammatory genes controlled by AP-1, and led to Bax-dependent mitochondrial apoptosis. Quercetin intervention effectively mitigated inflammation and apoptosis by activating the Nrf2. Thus, quercetin decreased intestinal free radical levels, inhibiting the phosphorylation of p38 and JNK. This study unveiled the harmful effects of aged-NPs on intestinal homeostasis and the practicability of dietary intervention against aged-NPs toxicity. These findings broaden the understanding of the NPs toxicity and provide an effective dietary strategy to relieve the health risks of NPs. ENVIRONMENTAL IMPLICATIONS: Growing levels of NPs pollution have represented severe health hazards to the population. This study focuses on the toxic mechanism of aged-NPs on the intestinal barrier and the alleviating effect of quercetin dietary intervention, which considers the environmental action and relevant dose. It revealed the harmful effects of aged-NPs on intestinal inflammation with the key point of free radical generation. Furthermore, a quercetin-rich diet holds significant promise for addressing and reversing intestinal damage caused by aged-NPs by maintaining intracellular redox homeostasis. These findings provide an effective dietary strategy to remediate human health risks caused by NPs.


Homeostasis , Nanoparticles , Quercetin , Quercetin/pharmacology , Homeostasis/drug effects , Humans , Nanoparticles/toxicity , Nanoparticles/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Animals , NF-E2-Related Factor 2/metabolism , Apoptosis/drug effects , Intestines/drug effects , Caco-2 Cells , Antioxidants/pharmacology
16.
Mol Nutr Food Res ; 68(8): e2300745, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581304

SCOPE: Naringenin (NAR) possesses unique anti-inflammatory, antiapoptosis effects and various bioactivities; however, its role against radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate whether NAR has protective effects against radiation-induced intestinal injury and the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI), then gavaged with NAR for 7 days. NAR treatment prolongs the survival rate, protects crypts and villi from damage, alleviates the level of radiation-induced inflammation, and mitigates intestinal barrier damage in the irradiated mice. Additionally, NAR reduces immune cell infiltration and intestinal epithelial cell apoptosis. NAR also shows radioprotective effects in human colon cancer cells (HCT116) and human intestinal epithelial cells (NCM460). It reduces cell damage by reducing intracellular calcium ion levels and reactive oxygen species (ROS) levels. NAR-mediated radioprotection is associated with the downregulation of transient receptor potential vanilloid 6 (TRPV6), and inhibition of apoptosis pathway. Notably, treatment with NAR fails to further increase the protective effects of the TRPV6 inhibitor 2-APB, indicating that TRPV6 inhibition is essential for NAR activity. CONCLUSION: NAR inhibits the apoptosis pathway by downregulating TRPV6 and reducing calcium ion level, thereby alleviating RIII. Therefore, NAR is a promising therapeutic drug for RIII.


Apoptosis , Flavanones , Mice, Inbred C57BL , Reactive Oxygen Species , TRPV Cation Channels , Animals , Flavanones/pharmacology , Humans , TRPV Cation Channels/metabolism , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Male , Mice , Radiation-Protective Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Intestinal Mucosa/metabolism , HCT116 Cells , Calcium Channels/metabolism , Intestines/drug effects , Intestines/radiation effects , Calcium/metabolism , Radiation Injuries/drug therapy
17.
J Ethnopharmacol ; 330: 118215, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38641073

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys malacophylla (Pall.) Fisch (O. malacophylla) is a succulent herbaceous plant that is the Orostachys genus of Crassulaceae family. O. malacophylla has been widely used as a traditional Chinese medicine with antioxidant, anti-inflammatory, anti-febrile, antidote, anti-Toxoplasma gondii properties. However, the biological function of alleviating intestinal inflammation and key bioactive compounds were still unknown. AIM OF THE STUDY: We used a Drosophila model to study the protective effects and bioactive compounds of O. malacophylla water extract (OMWE) and butanol extract (OMBE) on intestinal inflammation. MATERIALS AND METHODS: Drosophila intestinal inflammation was induced by oral invasion of dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15). We revealed the protective effects of two extracts by determining intestinal reactive oxygen species (ROS) and antimicrobial peptide (AMP) levels and intestinal integrity, and using network pharmacology analysis to identify bioactive compounds. RESULTS: We demonstrated that both OMWE and OMBE could ameliorate the detrimental effects of DSS, including a decreased survival rate, elevated ROS levels, increased cell death, excessive proliferation of ISCs, acid-base imbalance, and disruption of intestinal integrity. Moreover, the overabundance of lipid droplets (LDs) and AMPs by Ecc15 infection is mitigated by these extracts, thereby enhancing the flies' resistance to adverse stimuli. In addition, we used widely targeted metabolomics and network pharmacology analysis to identify bioactive compounds associated with IBD healing that are present in OMWE and OMBE. CONCLUSIONS: In summary, our research indicates that OMWE and OMBE significantly mitigate intestinal inflammation and have the potential to be effective therapeutic agents for IBD in humans.


Dextran Sulfate , Pectobacterium carotovorum , Plant Extracts , Reactive Oxygen Species , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Pectobacterium carotovorum/drug effects , Crassulaceae/chemistry , Intestines/drug effects , Intestines/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Drosophila melanogaster/drug effects , Disease Models, Animal , Drosophila , Network Pharmacology , Inflammation/drug therapy , Antimicrobial Cationic Peptides/pharmacology
18.
Fitoterapia ; 175: 105953, 2024 Jun.
Article En | MEDLINE | ID: mdl-38588905

Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.


Anthocyanins , Anthocyanins/pharmacology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Inflammation , Animals , Tight Junction Proteins/metabolism
19.
ACS Appl Mater Interfaces ; 16(17): 21498-21508, 2024 May 01.
Article En | MEDLINE | ID: mdl-38640442

Oral delivery of cells, such as probiotics and vaccines, has proved to be inefficient since cells are generally damaged in an acidic stomach prior to arrival at the intestine to exert their health benefits. In addition, short retention in the intestine is another obstacle which affects inefficiency. To overcome these obstacles, a cell-in-shell structure was designed with pH-responsive and mucoadhesive properties. The pH-responsive shell consisting of three cationic layers of chitosan and three anionic layers of trans-cinnamic acid (t-CA) was made via layer-by-layer (LbL) assembly. t-CA layers are hydrophobic and impermeable to protons in acid, thus enhancing cell gastric resistance in the stomach, while chitosan layers endow strong interaction between the cell surface and the mucosal wall which facilitates cell mucoadhesion in the intestine. Two model cells, probiotic L. rhamnosus GG and dead Streptococcus iniae, which serve as inactivated whole-cell vaccine were chosen to test the design. Increased survival and retention during oral administration were observed for coated cells as compared with naked cells. Partial removal of the coating (20-60% removal) after acid treatment indicates that the coated vaccine can expose its surface immunogenic protein after passage through the stomach, thus facilitating vaccine immune stimulation in the intestine. As a smart oral delivery platform, this design can be extended to various macromolecules, thus providing a promising strategy to formulate oral macromolecules in the prevention and treatment of diseases at a cellular level.


Chitosan , Animals , Administration, Oral , Hydrogen-Ion Concentration , Chitosan/chemistry , Probiotics/administration & dosage , Probiotics/pharmacology , Humans , Mice , Lacticaseibacillus rhamnosus , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects
20.
Toxicon ; 243: 107709, 2024 May 28.
Article En | MEDLINE | ID: mdl-38615996

Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.


Molecular Docking Simulation , Network Pharmacology , PPAR gamma , Quercetin , Trichothecenes , Quercetin/pharmacology , Animals , Trichothecenes/toxicity , Swine , PPAR gamma/metabolism , Oxidative Stress/drug effects , Intestines/drug effects , NAD(P)H Dehydrogenase (Quinone)/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
...